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Abstract—Techniques exploiting the sparsity of images in a
transform domain are effective for various applications in image
and video processing. In particular, transform learning methods
involve cheap computations and have been demonstrated to
perform well in applications such as image denoising and medical
image reconstruction. Recently, we proposed methods for online
learning of sparsifying transforms from streaming signals, which
enjoy good convergence guarantees, and involve lower compu-
tational costs than online synthesis dictionary learning. In this
work, we apply online transform learning to video denoising.
We present a novel framework for online video denoising based
on high-dimensional sparsifying transform learning for spatio-
temporal patches. The patches are constructed either from
corresponding 2D patches in successive frames or using an online
block matching technique. The proposed online video denoising
requires little memory, and offers efficient processing. Numerical
experiments evaluate the performance of the proposed video
denoising algorithms on multiple video data sets. The proposed
methods outperform several related and recent techniques includ-
ing denoising with 3D DCT, prior schemes based on dictionary
learning, non-local means, background separation, and deep
learning, as well as the popular VBM3D and VBM4D.

Index Terms—Sparse representations, Sparsifying transforms,
Machine learning, Data-driven techniques, Online learning, Big
data, Video denoising.

I. INTRODUCTION

Recent techniques in image and video processing make
use of sophisticated models of signals and images. Various
properties such as sparsity, low-rankness, etc., have been
exploited in inverse problems such as video denoising [I1,
2], or other dynamic image reconstruction problems such as
magnetic resonance imaging or positron emission tomography
[3]. Comparing to fixed signal models, data-driven models and
approaches are gaining increasing interest, and lead to promis-
ing results in various inverse problems. While the adaptation
of synthesis dictionaries for the purpose of denoising image
sequences or volumetric data [4,5] has been studied in some
recent papers, the usefulness of learned sparsifying transforms
[6,7] in these applications has not been explored. Video data
typically contain correlation along the temporal dimension,
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Fig. 1. Video streaming, tensor construction and vectorization.

which will not be captured by learning sparsifying transforms
for the 2D patches of the video frames [2].

In this work, we propose a video denoising scheme us-
ing high-dimensional online transform learning. We refer
to our proposed framework as VIdeo Denoising by Online
SpArsifying Transform learning (VIDOSAT). Spatio-temporal
(3D) patches are constructed using local 2D patches of the
corrupted video, and the sparsifying transform is adapted to
denoise these 3D patches on-the-fly. Fig.1 illustrates one way
of constructing the (vectorized) spatio-temporal patches or
tensors from the streaming video, and Fig.2 is a flow-chart
of the proposed VIDOSAT framework. Though we consider
3D spatio-temporal tensors formed by 2D patches for gray-
scale video denoising in this work, the proposed denoising
methods are also readily extended to higer-dimensional data
(e.g., color video [8], hyperspectral images, dynamic MRI).

A. Methodologies and Contributions

While our recent work proposed online transform learning
[7], in this work we focus on the application of efficient online
sparsifying transform learning to denoising high-dimensional
data, particularly videos. We propose video denoising algo-
rithms, named VIDOSAT and VIDOSAT-BM that exploit the
underlying data structure and strong spatio-temporal corre-
lations in dynamically varying data. Since these are online
and data-adaptive algorithms, the models in VIDOSAT and
VIDOSAT-BM change over time and space capturing the
changes in data structure and redundancy or correlations. To
the best of our knowledge, the proposed methodologies are
the first online video denoising methods using adaptive sparse
signal modeling, and the first application of high-dimensional
sparsifying transform learning to spatio-temporal data. Our
methodology and results are summarized as follows:

o The proposed video denoising framework processes noisy
frames in an online, sequential fashion to produce stream-
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ing denoised video frames. The algorithms require limited
storage of a few video frames, and modest computation,
scaling linearly with the number of pixels per frame. As
such, our methods may be able to handle high definition
or high rate video enabling real-time output with con-
trolled delay, using modest computational resources.

o The online transform learning technique exploits the
spatio-temporal structure of the video tensors (patches)
using adaptive 3D transform-domain sparsity to process
them sequentially. The denoised tensors are aggregated
to reconstruct the streaming video frames.

e« We evaluate the video denoising performance of the
proposed algorithms on several datasets, and demonstrate
their promising performance compared to several prior or
related methods.

A short version of this work appeared in [2]. This work
substantially expands upon [2] and proposes novel VIDOSAT
methodologies such as involving block matching (BM) to
capture motion and rotational redundancy (referred to as
VIDOSAT-BM). Moreover, we provide detailed experimental
results illustrating the properties of the proposed methods and
their performance for several video datasets, with extensive
evaluation and comparison to prior or related methods. We
also demonstrate the advantages of the proposed VIDOSAT-
BM in various scenarios.

Compared to various existing video denoising algorithms,
the algorithms in this work (VIDOSAT and VIDOSAT-BM)
generate denoised video estimates with improved quality. The
key factors to the success of our proposed algorithms are
summarized as follows:

« Unlike conventional methods that do not involve learning,
the proposed data-driven approaches exploit adaptively
estimated video models.

o Transform learning shows performance and speed bene-
fits in video restoration compared to dictionary learning.

e The proposed VIDOSAT algorithms are zero-shot meth-
ods, which learn from and restore the noisy data directly.

o The online denoising algorithms with forgetting factors
and block matching are particularly effective for handling
video with various kinds of motion or dynamics in the
scene.

o Learning and restoration of high-dimensional space-time
patches fully exploit the spatio-temporal data correlation
in video denoising.

B. Major Notation

Vectors (resp. matrices) are denoted by boldface lowercase
(resp. uppercase) letters such as u (resp. U). We use calli-
graphic uppercase letters (e.g., If) to denote tensors. We denote
the vectorization operator for 3D tensors (i.e., for reshaping
a 3D array into a vector) as vec(:) : R"*n2x™ _ R™ The
vectorized tensor is u = vec(U) € R”, with n = ninam.
Correspondingly, the inverse of the vectorization operator
vec 1() : R™ — R™X"2X™ denotes a tensorization operator.
The relationship is summarized as follows:

U € RM Xn2xm :’_if

vec—1

uec R"™
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Indices Definition Range
T time index 1,2,3, etc.

P spatial index of 3D patches in Y- 1...P

7 index of patches within mini-batch 1..M

k local mini-batches index at time 7 1..N
jor L global mini-batch index 1,2, 3, etc.
Variables Definition Dimension

W, adaptive sparsifying transform nxn

Y- video frames axXb
V- input FIFO buffer axXbxm
V- output FIFO buffer axbxm

U; mini-batch of vectorized data nx M

X sparse codes of the mini-batch nx M
Vp vectorized 3D patch n = ninam
Operators Definition Mapping

R, extracts 3D patch in Al RP —
B, forms 3D patch in A2 by BM R xm2xm
R; patch deposit operator in Al R71Xn2xm

B, patch deposit operator in A2 — RF

TABLE I
NOTATION OF THE INDICES AND THE MAIN VARIABLES AND OPERATORS.
ALGORITHMS A1 AND A2 ARE PRESENTED IN SECTION V.

The other major notations of the indices and variables that are
used in this work are summarized in Table I. We denote the
underlying signal or variable as 4, and its noisy measurement
(resp. estimate) is denoted as u (resp. u). The other notations
used in our algorithms are discussed in later sections.

C. Organization

The rest of the paper is organized as follows. Section II
summarizes the related works on video denoising and spar-
sifying transform learning. Section III briefly discusses the
recently proposed formulations for time-sequential signal de-
noising based on online and mini-batch sparsifying transform
learning [7]. Then, Section IV presents the proposed online
video processing framework. Section V describes efficient
algorithms for the proposed formulations, and specifically, two
online approaches for denoising dynamic data. Section VI
demonstrates the behavior and promise of the proposed algo-
rithms for denoising several datasets. Section VII concludes
with proposals for future work.

II. RELATED WORKS

The proposed VIDOSAT is an online data-driven approach
based on learning sparsifying transforms for video denoising.
In the following, we briefly review the related works on video
denoising and sparsifying transform learning.

A. Video Denoising

Denoising is one of the most important problems in video
processing. The ubiquitous use of relatively low-quality smart
phone cameras has also led to the increasing importance of
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Signal Model
Fixed | Learned | Online
fBM3D [11] v v
fDnCNN [12] v
3D DCT v
sKSVD v
ReLD [21] v
RNLF [18] v
VBM3D [15] v v
VBM4D [19] v v
VIDOSAT
VIDOSAT
-BM

Temp. | FG.
Corr. Sep.

Methods BM

NOINISNNIN N NS

TABLE 11
COMPARISON BETWEEN VIDEO DENOISING METHODS. fBM3D AND
fDNCNN APPLY BM3D AND DNCNN, RESPECTIVELY, TO DENOISE
INDIVIDUAL FRAMES. VIDOSAT AND VIDOSAT-BM ARE THE
METHODS PROPOSED HERE, WHILE THE 3D DCT METHOD APPLIES
THE VIDOSAT FRAMEWORK BUT USES THE FIXED 3D DCT TRANSFORM.
‘WE ABBREVIATE TEMPORAL CORRELATION (TEMP. CORR.) AND
FOREGROUND SEPARATION (F.G. SEP.,).

video denoising. Recovering high-quality video also improves
robustness in high-level vision tasks [9, 10].

Though image denoising algorithms, such as the popular
BM3D [11] or the recent DnCNN [12] methods can be applied
to each video frame independently, most of the video denoising
techniques (or more generally, methods for reconstructing
dynamic data from measurements [13]) exploit the spatio-
temporal correlation in dynamic image sequences. Natural
videos have local structures that are sparse or compressible in
some transform domain, or in certain dictionaries, e.g., discrete
cosine transform (DCT) [14] and wavelets [1]. Prior works
exploited this fact and proposed video (or high-dimensional
data) denoising algorithms based on adaptive sparse approx-
imation [5] and Wiener filtering [15]. Besides, recent works
also applied Bayesian modeling [16], low-rankness [17], and
non-local means [18] for video denoising.

Different from images or volumetric data, videos typically
involve various kinds of motion or dynamics in the scene, e.g.,
moving objects or people, rotations, etc. State-of-the-art video
and image denoising algorithms utilize block matching (BM)
to group local patches over space and time (to account for
motion), and apply denoising jointly for such matched data
[11,15,19]. Alternatively, recent works [20,21] proposed to
separate the sparse and dynamic foreground from the low-rank
background in video denoising, modeling their properties dif-
ferently. Table II summarizes the key attributes of the popular
and related video denoising methods as well as the proposed
methods. The methods classified as using a fixed signal model
use an analytical sparsifying transform. Compared to the prior
approaches, our techniques exploit several properties such
as spatio-temporal data redundancy, block matching, online
learning, and forgetting factors to denoise videos effectively.

B. Sparsifying Transform Learning

Many of the aforementioned video denoising methods ex-
ploit sparsity in a fixed transform domain (e.g., DCT) as
part of their framework. Several recent works have shown

that the data-driven adaptation of sparse signal models (e.g.,
based on training signals, or directly from corrupted measure-
ments) usually leads to high quality results (e.g., compared
to fixed or analytical models) in many applications [4,22—
30]. Synthesis dictionary learning is the best-known adaptive
sparse representation technique [22,31]. However, obtaining
optimal sparse representations of signals in synthesis dic-
tionary models, known as synthesis sparse coding, is NP-
hard (Non-deterministic Polynomial-time hard) in general. The
commonly used approximate sparse coding algorithms [32—
35] typically still involve relatively expensive computations
for large-scale problems.

As an alternative, the sparsifying transform model suggests
that the signal u is approximately sparsifiable using a trans-
form W € R™*" je., Wu = x + e, with x € R™ a vector
with few non-zeros, called the transform sparse code and e a
modeling error term in the transform domain. A key advantage
of this model over the synthesis dictionary model, is that
for a given transform W, the optimal sparse approximation
x of sparsity level s minimizing the modeling error ||e||> is
obtained exactly and cheaply by simple thresholding of Wu
to its s largest magnitude components. Another advantage
is that with u being given data, the transform model does
not involve a product between W and unknown variables,
so learning algorithms for W can be simpler and more
reliable. Recent works ([6] and references therein) proposed
learning sparsifying transforms with cheap algorithms that
alternate between updating the sparse approximations of train-
ing signals in a transform domain using simple thresholding-
based transform sparse coding, and efficiently updating the
sparsifying transform. Transform learning-based techniques
have been shown to be useful in various applications such as
sparse data representations, image denoising, inpainting, seg-
mentation, magnetic resonance imaging (MRI), and computed
tomography (CT) [27,36,37].

In prior works on batch transform learning [6,27,36], the
transform was adapted using all the training data, which is effi-
cient and comes with convergence guarantees. When process-
ing large-scale streaming data, it is also important to compute
results online, or sequentially over time. Our recent work [7]
proposed online transform learning, which sequentially adapts
the sparsifying transform and transform-sparse coefficients for
sequentially processed signals. This approach involves cheap
computation and limited memory requirements. Compared to
popular techniques for online synthesis dictionary learning
[38], the online adaptation of sparsifying transforms allows
for cheaper and exact updates [7], and is thus well suited for
high-dimensional data applications.

III. SIGNAL DENOISING
VIA ONLINE TRANSFORM LEARNING

The goal in denoising is to recover an estimate of a signal
u € R” from the measurement u = u + e, corrupted
by additive noise e. Here, we consider a time sequence of
noisy measurements {u;}, with u; = @; + e;. We assume
noise e; € R™ whose entries are independent and identically
distributed (i.i.d.) Gaussian with zero mean and possibly
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Fig. 2. Illustration of the online video streaming and denoising framework.

time-varying but known variance o7. Online denoising is to
recover the estimates U, for u; V ¢ sequentially. Such time-
sequential denoising with low memory requirements would be
especially useful for streaming data applications. We assume
that the underlying signals {;} are approximately sparse in
an (unknown, or to be estimated) transform domain.

A. Online Transform Learning

In prior work [7], we proposed an online signal denoising
methodology based on sparsifying transform learning, where
the transform is adapted based on sequentially processed
data. For time ¢t = 1,2, 3, etc, the problem of updating the
adaptive sparsifying transform and sparse code (i.e., the sparse
representation in the adaptive transform domain) to account for
the new noisy signal u; € R” is

t
“ 1
{Wt,xt} = argmin 3 {||qu — x| + )\TI/(W)}

Xt —

1 t

+-Y o2 x|y stox =%, 1<7<t—1 (P
t
T=1

where the {o “norm” counts the number of nonzeros in xz,,
which is the sparse code of u,. Thus |Wu, — XTHg is the
sparsification error (i.e., the modeling error in the transform
model) for u in the transform W € R™*". The term v(W) =
—log |det W| + ||WH?, is a transform learning regularizer
[7], Ar = Ao ||uT||§ with A\g > 0 allows the regularizer term
to scale with the first term in the cost, and the weight o, is
chosen proportional to o, (the standard deviation of noise in
u,). Matrix Wt in (P1) is the optimal transform at time ¢,
and X; is the optimal sparse code for u;.

Note that at time ¢, only the latest optimal sparse code
%; is updated in (P1)' along with the transform W,. The
condition x, = X,, 1 < 7 < t — 1, is therefore assumed.
For brevity, we will not explicitly restate this condition (or, its
variants) in the formulations in the rest of this paper. Although
at each time ¢ the transform is updated based on all the past

IThis is because only the signal u; is assumed to be stored in memory at
time ¢ for the online scheme.

and present observed data, the online algorithm for (P1) [7]
involves efficient operations based on a few matrices of modest
size, accumulated sequentially over time.

The regularizer ¥(W) in (P1) prevents trivial solutions
and controls the condition number and scaling of the learnt
transform [7]. The condition number (W) is upper bounded
by a monotonically increasing function of v(W) [7]. In the
limit Ay — oo (and assuming the u,, 1 < 7 < ¢, are not all
zero), the condition number of the optimal transform in (P1)
tends to 1. The specific choice of Ay (and hence the condition
number) depends on the application.

1) Denoising: Given the optimal transform W, and the
sparse code Xx;, a simple estimate of the denoised signal
is obtained as u; = Wt_ 1%;. Online transform learning
can also be used for patch-based denoising of large images
[7]. Overlapping patches of the noisy images are processed
sequentially (e.g., in raster scan order) via (P1), and the
denoised image is obtained by averaging together the denoised
patches at their respective image locations.

2) Forgetting factor: For non-stationary or highly dynamic
data, it may not be desirable to uniformly fit a single transform
W to all the u,, 1 < 7 <t,in (P1). Such data can be handled
by introducing a forgetting factor p'~" (with a constant 0 <
p < 1) that scales the terms in (P1) [7]. The forgetting factor
diminishes the influence of “old” data. The objective function
in this case is modified as

t
1 _r 2
& 20T {IWur =3+ Av(W) a2 [xellg | - (1)
T=1
where Cy = 2321 p'~7 is the normalization factor.

B. Mini-batch learning

Another useful variation of Problem (P1) involves mini-
batch learning, where a block (group), or mini-batch of signals
is processed at a time [7]. Assuming a fixed mini-batch
size M, the Lth (L > 1) mini-batch of signals is U; =
[uLM7M+1 | ULM—M+2 | | llL]\/[}.FOI'L:LQ,?), etc,
the mini-batch sparsifying transform learning problem is

L

I 1 )

P2 {W , X }:ar min —— WU, — X,

( ) L, AL V§,XL LMJ;H J JHF

| LM &
2
+ 737 l};al Ixillo + 137 ,Zlf‘j v(W)

— j=

where the regularizer weight is A; = Ag HUj ||j, and the ma-
trix Xz = [XL]\/I—]W-&-I | XLM—M4+2 ‘ ‘ X7, M| contains
the block of sparse codes corresponding to Uy,.

Since we only consider a finite number of frames or patches
in practice (e.g., in the proposed VIDOSAT algorithms), the
normalizations by 1/¢ in (P1), 1/C} in (1), and 1/LM in (P2)
correspondingly have no effect on the optimum {Wt,f(t}
or {W L X L}. Thus we drop, for clarity?, normalization
factors from (P3) and all subsequent expressions for the cost
functions.

2In practice, such normalizations may still be useful, to control the dynamic
range of various internal variables in the algorithm.
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Once (P2) is solved, a simple denoised estimate of the noisy
block of signals in Uy, is obtained as IjL = WzlﬁL. The
mini-batch transform learning Problem (P2) is a generalized
version of (P1), with (P2) being equivalent to (P1) for M = 1.
Similar to (1), (P2) can be modified to include a forgetting
factor. Mini-batch learning can provide potential speedups over
the M = 1 case in applications, but this comes at the cost
of higher memory requirements and latency (i.e., delay in
producing output) [7].

IV. VIDOSAT FRAMEWORK AND FORMULATIONS

Prior work on adaptive sparsifying transform-based image
denoising [6,7,27] adapted the transform operator to 2D
image patches. However, in video denoising, exploiting the
sparsity and redundancy in both the spatial and temporal
dimensions typically leads to better performance than de-
noising each frame separately [5]. We therefore propose an
online approach to video denoising by learning a sparsifying
transform on appropriately constructed 3D spatio-temporal
patches.

A. Video Streaming and Denoising Framework

Fig. 2 illustrates the framework of our proposed online de-
noising scheme for streaming videos. The frames Y, € R**?
of the noisy video (assumed to be corrupted by additive i.i.d.
Gaussian noise) arrive at 7 = 1,2,... . At time 7 = {,
the newly arrived frame Y, is added to a fixed-size FIFO
(first in first out) buffer (i.e., queue) that stores a block of
m consecutive frames {Yi}zzt—m e The oldest (leftmost)
frame is dropped from the buffer at each time instant. We
denote the spatio-temporal tensor or 3D array obtained by
stacking noisy frames along the temporal dimension in the
buffer as V; = [Yi—my1 | Y] € R¥Pxm  we
denoise the noisy array ); using the proposed VIDOSAT mini-
batch denoising algorithms (denoted by the red box in Fig. 2)
that are discussed in Sections IV-B and V. These algorithms
denoise groups (mini-batches) of 3D patches sequentially and
adaptively, by learning sparsifying transforms. Overlapping
patches are used in our framework.

The patches output by the mini-batch denoising algo-
rithms are deposited at their corresponding spatio-temporal
locations in the fixed-size FIFO output buffer ); =
[Yiomtt | | Y,] by adding them to the contents of };.
We call this process patch aggregation. The streaming scheme
then outputs the oldest frame Y, _ m+1- The denoised estimate
Y, m+1 is obtained by normalizing Y,_,, 1 pixel-wise by
the number of occurrences of each pixel in the aggregated
patches. (see Section V for details).

Though any frame could be denoised and output from
), instantaneously, we observe improved denoising quality
by averaging over multiple denoised estimates obtained at
different times. Fig. 3 illustrates how the output buffer varies
from time ¢ to ¢t + (m — 1), to output the denoised Yt. In
practice, we set the length of the output buffer ) to be the same
as the 3D patch depth m, such that each denoised frame Y,
is output by averaging over its estimates from all 3D patches
that group the tth frame with m — 1 adjacent frames. We refer

3D Buffer Vi+(m-1

Y +m-1
Y, isfirst denoised in Depth=m i
the FIFO buffer at time ¢
3D Buffer j}t Y: 1
Depth=m [_—1 3D Patch
— Depth =m
Y —(m—
3D Patch -~
Depth = m, - s
= m-1 future
adjacent frames
-
LY/ = o Output the denoised frame
g ~
= A Y attimet+(m-1)
adjacent frames

Fig. 3. Evolution of the output buffer from time ¢ to ¢ + (m
generate the denoised frame output Y.

— 1) used to

to this scheme as “two-sided” denoising, since the tth frame
is denoised together with both past and future adjacent frames
(m — 1 frames on each side), which are highly correlated.
Now, data from frame Y, is contained in 3D patches that
also contain data from frame Y, ,,_1. Once these patches are
denoised, they will contribute (by aggregation into the output
buffer) to the final denoised frame Yt. Therefore, we must
wait for frame Y,i,,_1 before producing the final estimate
Y. Thus there is a delay of m—1 frames between the arrival of
the noisy Y; and the generation of its final denoised estimate
Y;.

B. VIDOSAT Mini-Batch Denoising Formulation

Here, we discuss the mini-batch denoising formulation
that is a core part of the proposed online video denoising
framework. For each time instant ¢, we denoise P partially
overlapping size n; X ng X m 3D patches of ), whose
vectorized versions are denoted as {Vp} > with vl € R,
n = mning. We sequentially process dlS_]Oil‘lt groups of
M such patches, and the groups or mini-batches of patches
(total of NN mini-batches, where P = MN) are denoted
as {ULZ}kN:r with Up: € R™*M  Here, k is the local
mini-batch index within the set of P patches of );, whereas
Lt £ Nx(t—1)+k is the global mini-batch index, identifiying
the mini-batch in both time ¢ and location within the set of P
patches of ).

For each ¢, we solve the following online transform learning
problem for each k = 1,2, 3, ..., N, to adapt the transform and
sparse codes sequentially to the mini-batches in ):

L},
(P3) {Wiy Xy } = argmin - o4 [WU, - X}

7XL§C j=1

+Zka J{A V(W +ZO‘NHXNH0}

Here, the transform is adapted based on patches from all
the observed Y., 1 < 7 < t. The matrix X; =
[xj1 | ... | xj0] € R"*M denotes the transform sparse codes
corresponding to the mini-batch U;. The sparsity penalty
weight a?’i in (P3) controls the number of non-zeros in x; ;.
We set o;; = ooy, where ap > 0 is a constant and o ; is
the noise standard deviation for each patch. We use a forgetting
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factor poe ~J in (P3) to diminish the influence of old frames
and old mini-batches.

Once (P3) is solved, the denoised version of the current
noisy mini-batch U rt is computed. The columns of the de-

noised U 1t are tensorized and aggregated at the corresponding
spatial and temporal locations in the output FIFO buffer.
Section V next discusses the proposed VIDOSAT algorithms
with two different ways of constructing the 3D patches in full
detail.

V. VIDEO DENOISING ALGORITHMS

We now discuss two video denoising algorithms, namely
VIDOSAT and VIDOSAT-BM. VIDOSAT-BM uses block
matching to generate the 3D patches from );. Though these
methods differ in the way they construct the 3D patches, and
the way the denoised patches are aggregated in the output
FIFO, they both denoise groups of 3D patches sequentially
by solving (P3). The VIDOSAT denoising algorithm (without
BM) is summarized in Algorithm A13. The VIDOSAT-BM
algorithm, a modified version of Algorithm A1, is discussed
in Section V-B.

A. VIDOSAT

As discussed in Section IV-B, the VIDOSAT algorithm
processes each mini-batch U; in ), sequentially. We solve
the mini-batch transform learning problem (P3) using a simple
alternating minimization approach, with one alternation per
mini-batch, which works well and saves computation. Initial-
ized with the most recently estimated transform (warm start),
we perform two steps for (P3): Sparse Coding, and Mini-
batch Transform Update, which compute X and update WJ,
respectively. Then, we compute the den01sed mini-batch U],
and aggregate the denoised patches into the output buffer ), .

The major steps of the VIDOSAT algorithm A1 for denois-
ing the kth mini-batch Uy at time ¢ and further processing
these denoised patches are described. To facilitate the exposi-
tion and interpretation in terms of the general online denoising
algorithm described, various quantities (such as positions of
3D patches in the video stream) are indexed in the text with
respect to absolute time ¢. On the other hand, to emphasize the
streaming nature of Algorithm A1 and its finite (and modest)
memory requirements, indexing of internal variables in the
statement of the algorithm is local.

1) Noisy Mini-Batch Formation: To construct each mini-
batch U Lt partially overlapping n; X ny X m 3D patches of
Y, are extracted sequentially in a spatially contiguous order
(raster scan order with direction reversal on each line)*. Let
R,Y; denote the pth vectorized 3D patch of ), with R,
being the patch-extraction operator. Considering the patch
indices S, = {M(k—1)+1,..,Mk} for the kth mini-

batch, we extract {vlt, = vec(Rp)t) }p cs, 8 the patches in the

mini-batch. Thus Up: = {V}f\/[(,ﬁl)ﬂ [ .. ] vafk]. To impose

3In practice, we wait for the first m frames to be received, before starting
Algorithm A1, to avoid zero frames in the input FIFO buffer

4We did not observe any marked improvement in denoising performance,
when using other scan orders such as raster or Peano-Hilbert scan [39].

Algorithm Al: VIDOSAT Denoising Algorithm

Input: The noisy frames Y, (7 = 1,
initial transform Wy (e.g., 3D DCT).
Initialize: W = W,, T = © =0, 3 =0,
and output buffer )) = 0.
For 7=1,2,3, etc., Repeat
The newly arrived frame Y, — latest frame in the input
FIFO frame buffer ).
For k=1,..., N Repeat
Indices of patches in V: Sy, = {M(k—1)+1
1) Noisy Mini-Batch Formation:
a) Patch Extraction: v, = vec(R,))
b) U= [ul | | uM] — [VMk—]VI+1 ‘ | VMk}-
2) Sparse Coding: X; = H,,(Wu;) Vie {1,...,M}.
3) Mini-batch Transform Update:
a) Define A £ X\o||U[% and X £
b) T + pI' + UUT,
¢) © « p® + UXT,
d) g+ pB8+A.
e) Matrix square root: Q « (T + BI)'/2,
f) Full SVD: #XW¥7T SVD(QT@).
o) W« 0.5% (2 + (224 2;31)5) d7TQ L.
4) 3D Denoised Patch Reconstruction:
a) Update Sparse Codes: x; = H,, (Wuz) Vi.
b) Denoised mini-batch: U= W 1X
) Va1 | | Vaa] U
d) Tensorization: V =vec 1(V,) Vp € Sk.
5) Aggregation: Aggregate patches {Vp} at corre-
sponding locations: ¥ < 3 ¢ R;f)p.
End
Output: The oldest frame in Y after normalization — the
denoised frame Yr—m+1.
End

2,3, etc.), and the

ooy ME).

Vp € Sk.

(%1 | - | %]

spatio-temporal contiguity of 3D patches extracted from two
adjacent stacks of frames, we reverse the raster scan order (of
patches) between ), and ;1.

2) Sparse Coding: Given the sparsifying transform W =
W Lt-1 estimated for the most recent mini-batch, we solve
Problem (P3) for the sparse coefficients X Lt

M
5 . 2 9
%,y = angmin WU X2+ ey [, @
i=1
A solution for (2) is given in closed-form as )A(LZ i =
H, , ,(VAVLtk,luLtk ;) V i [7]. Here, the hard thresholding
kot ?
operator H,(-) : R® — R™ is applied to a vector element-
wise, as defined by

0 , |d|<a
H,(d)),. = 3
(Ha(d), {dr e G
This simple hard thresholding operation for transform sparse
coding is similar to traditional techniques involving analytical
sparsifying transforms [40].
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Direct
Extraction
R, Yein
VIDOSAT

Block
Matching
B, Ysin
VIDOSAT-BM

—

Fig. 4. Different 3D patch construction methods in VIDOSAT (top) and
VIDOSAT-BM (bottom). The 3D search window used in VIDOSAT-BM in
green broken line.

3) Mini-batch Transform Update: We solve Problem (P3)
for W with fixed X; = X;, 1 < j < L, as follows:

Ly,
min ;p%—j {IWU; = X5+ aW)} . @)
Jj=

This problem has a simple solution (similar to Section III-B2
in [7]). Set index J £ LF, and define the following quantities:
r, £yl p7uul e, 2 ) p79U,XT, and
By = Zj:l p?IA;. Let Q € R™ "™ be a square root (e.g.,
Cholesky factor) of (T'; + ;1) ie, QQT = T'; + B,L
Denoting the full singular value decomposition (SVD) of
Q '®; as U7, based on [7] the closed-form solution
to (4) is

W, =059 (2 + (224 QﬁJI)%) 2'Qt

where I denotes the identity matrix, and (-)2 denotes the
positive definite square root of a positive definite (diagonal)
matrix. The quantities I'j, ®;, and [; are all computed
sequentially over time ¢ and mini-batches k [7].

4) 3D Denoised Patch Reconstruction: We denoise U Lt
using the updated transform. First, we repeat the sparse coding
step using the updated WLt asXpe ;= HaLt z(VAVU upe ;) v

i. Then, with fixed W Lt and X Lis the den01sed mini-batch is
obtained in the least squares sense under the transform model
as

f o1

Ut _WL;XLE' (6)

The denoised mini-batch is used to update the denoised
(vectorized) 3D patches as ‘A’]zfv[(k Vi = u Lt V1. All recon-

structed vectors {Vp} from the kth mini- batch denoising

result are tensorized as {vec (%)}p s,

5) Aggregation: The denoised 3D patches
{vec_l(f/f,)}p cs, from each mini-batch are sequentially
aggregated at  their  corresponding  spatial  and
temporal locations in the output FIFO buffer as
Zpes Rivec H(VE) — Y, € R**P*™ where the adjoint
Ry is the patch deposit operator. Fig. 5 illustrates the patch
deposit procedure for aggregation.

When all N denoised mini-batches for ) are generated,
and the patch aggregation in )); completes, the oldest frame

yt c Raxbxm

R,Y; inA1
or BpY; inA2

Vectorization

N \, nyXngxm
Patch deposit RV, in AL, VI’ ER

or B}V, inA2.

Fig. 5. Patch deposit R vec™1(Vp) (resp. By vec™1(¥p)) as an adjoint
of patch extraction operator in A1l (resp. an adjoint of BM operator in A2).

in )); is normalized pixel-wise by the number of occurrences
(which ranges from 2m — 1, for pixels at the corners of a
video frame, to n for pixels away from the borders of a video
frame) of that pixel among patches aggregated into the output
buffer. This normalized result is output as the denoised frame
Yt—m+1-

B. VIDOSAT-BM

For videos with relatively static scenes, each extracted
spatio-temporal tensor R,); in the VIDOSAT Algorithm A1
typically has high temporal correlation, implying high (3D)
transform domain sparsity. However, highly dynamic videos
usually involve various motions, such as translation, rotation,
scaling, etc. Figure 4 demonstrates one example when the
3D patch construction strategy in the VIDOSAT denoising
algorithm A1 fails to capture the properties of the moving
object. Thus, Algorithm A1 could provide sub-optimal denois-
ing performance for highly dynamic videos. We propose an
alternative algorithm, dubbed VIDOSAT-BM, which improves
VIDOSAT denoising by constructing 3D patches using block
matching.

The proposed VIDOSAT-BM solves the online transform
learning problem (P3) with a different methodology for con-
structing the 3D patches and each mini-batch. The Steps
(2) — (4) in Algorithm A1l remain the same for VIDOSAT-
BM. We now discuss the modified Steps (1) and (5) in the
VIDOSAT-BM denoising algorithm, to which we also refer as
Algorithm A2.

1) 3D Patch and Mini-Batch Formation in VIDOSAT-BM:
Here, we use a small and odd-valued sliding (temporal)
window size m (e.g., we set m = 9 in the video denoising
experiments in Section VI, which corresponds to ~ 0.2s buffer
duration for a video with 40 Hz frame rate). Within the
m-frame input FIFO buffer ), we approximate the various
motions in the video using simple (local) translations [41].

We consider the middle frame Y;_(;,_1)/2 in the input
FIFO buffer ), and sequentially extract all 2D overlapping
patches Z!, € R™*"2, 1 < p < P in Y¢_(;y_1)/2, in a 2D
spatially contiguous (raster scan) order. For each Zf, we form
a hy X he X m pixel local search window centered at the center
of Z; (see the illustration in Fig. 4). We apply a spatial BM
operator, denoted B,, to find (using exhaustive search) the
(m—1) patches, one for each neighboring frame in the search
window, that are most similar to Zfo in Euclidean distance.
The operator B, stacks the Z;, followed by the (m — 1)
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Data ASU Dataset (26 videos) APSNR LASIP Dataset (8 videos) APSNR
o 5 10 15 20 50 (std.) 5 10 15 20 50 (std.)
fBM3D 3.89 2.11
38.78 | 34.66 | 32.38 | 30.82 | 26.13 38.05 | 34.06 | 31.89 | 30.42 | 25.88
[11] (1.41) (1.03)
fDnCNN 4.82 1.12
N/A 32.59 | 30.78 | 30.90 | 26.43 N/A 35.05 | 33.01 | 31.55 | 26.81
[12] (2.57) (0.44)
sKSVD 1.20 1.21
41.27 | 37.37 | 35.15 | 33.59 | 28.79 38.87 | 34.95 | 32.80 | 31.33 | 26.89
[5] (0.34) (0.38)
1.69 3.60
3D DCT 41.26 | 37.14 | 34.73 | 33.03 | 27.59 38.01 | 33.60 | 30.44 | 28.50 | 22.31
(0.78) (1.28)
RNLF 1.37 1.33
40.60 | 37.21 | 35.21 | 33.72 | 28.58 38.22 | 34.90 | 33.02 | 31.61 | 26.48
[18] (0.29) (0.36)
RelLD 1.38 1.20
40.83 | 37.24 | 35.21 | 33.75 | 28.23 38.19 | 34.89 | 33.05 | 31.76 | 26.98
[21] (0.31) (0.35)
VBM3D 0.92 0.61
41.10 | 37.82 | 35.78 | 34.25 | 28.65 39.20 | 35.75 | 33.87 | 32.49 | 26.51
[15] 0.72) (0.51)
VBM4D 1.30 0.63
4142 | 3759 | 35.30 | 33.64 | 27.76 39.37 | 35.73 | 33.70 | 32.24 | 26.68
[19] (0.86) (0.49)
0.27 0.55
VIDOSAT | 41.94 | 38.32 | 36.13 | 34.60 | 29.87 39.56 | 35.75 | 33.54 | 31.98 | 27.29
(0.13) (0.29)
VIDOSAT
BM 42.22 | 38.57 | 36.42 | 34.88 | 30.09 39.95 | 36.11 | 34.05 | 32.60 | 28.15 0

TABLE III
COMPARISON OF VIDEO DENOISING PSNR VALUES (IN DB), AVERAGED TWO DATASETS FOR THE PROPOSED VIDOSAT, VIDOSAT-BM, AND OTHER
COMPETING METHODS. FOR EACH DATASET AND NOISE LEVEL, THE BEST DENOISING PSNR 1S MARKED IN BOLD. FOR EACH METHOD, WE LIST A
PSNR, WHICH DENOTES THE AVERAGE PSNR LOSS (WITH ITS STANDARD DEVIATION IN PARENTHESES) RELATIVE TO THE PROPOSED VIDOSAT-BM.

matched patches, in an ascending order of their Euclidean
distance to Z;,, to form the pth 3D patch B,), € R™>m2xm,
Similar BM approaches have been used in prior works on
video compression (e.g., MPEG) for motion compensation
[41], and in recent works on spatiotemporal medical imaging
[3]. The coordinates of all selected 2D patches are recorded
to be used later in the denoised patch aggregation step.
Instead of constructing the 3D patches from 2D patches in
corresponding locations in contiguous frames (i.e., ,); in
Algorithm Al), we form the patches using BM and work
with the vectorized v}, = vec(B,);) € R™ in VIDOSAT-
BM. The k-th mini-batch is defined as in Algorithm Al as
Up = [vg\/l(kfl)Jrl || V?\/[k]

Each denoised 3D patch (tensor) of
{vecfl({l;))}pe s, contains the matched (and denoised) 2D
patches. They are sequentially aggregated at their recorded
spatial and temporal locations in the output FIFO buffer ); as
Ypes, Bpvee 1 (Vh) = Vi € RYP™ where the adjoint
B, is the patch deposit operator in A2. Fig. 5 illustrates
the patch deposit procedure for aggregation in A2. Once
the aggregation of )); completes, the oldest frame in ),
is normalized pixel-wise by the number of occurrences of
each pixel among patches in the denoising algorithm. Unlike

2) Aggregation:

Algorithm A1 where this number of occurrences is the same
for all frames, in Algorithm A2 this number is data-dependent
and varies from frame to frame and pixel to pixel. We record
the number of occurrences of each pixel which is based on
the recorded locations of the matched patches, and can be
computed online as described. The normalized oldest frame is
output by Algorithm A2 for each time instant.

C. Computational Costs

In Algorithm A1, the computational cost of the sparse
coding step is dominated by the computation of matrix-vector
multiplication Wu;, which scales as O(Mn?) [2,7] for each
mini-batch. The cost of mini-batch transform update step is
O(n® 4+ Mn?), which is dominated by full SVD and matrix-
matrix multiplications. The cost of the 3D denoised patch
reconstruction step also scales as O(n®+Mn?) per mini-batch,
which is dominated by the computation of matrix inverse
W1 and multiplications. As all overlapping patches from a
a x b x T video are sequentially processed, the computational
cost of Algorithm A1 scales as O(abTn®/M + abTn?). We
set M = 15n in practice, so that the cost of Al scales
as O(abTn?). The cost of the additional BM step in Al-
gorithm A2 scales as O(abT'mhihy), where hy X hg is the
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search window size. Therefore, the total cost of A2 scales as
O(abTn? + abT'mhyhs), which is on par with the state-of-
the-art video denoising algorithm VBM3D [15], which is not
an online method.

VI. EXPERIMENTS
A. Implementation and Parameters

1) Testing Data: We present experimental results demon-
strating the promise of the proposed VIDOSAT and
VIDOSAT-BM online video denoising methods’. We evaluated
the proposed algorithms by denoising all 34 videos from 2
public datasets, including 8 videos from the LASIP video
dataset® [15, 19], and 26 videos of the Arizona State University
(ASU) Video Trace Library’ [42]. The testing videos contain
50 to 870 frames, with the frame resolution ranging from
176 x 144 to 720 x 576. Each video involves different types of
motion, including translation, rotation, scaling (zooming), etc.
The color videos are all converted to gray-scale. We simulated
1.1.d. zero-mean Gaussian noise at 5 different noise levels (with
noise standard deviation o = 5, 10, 15, 20, and 50) for each
video.

2) Implementation Details: We include several minor mod-
ifications of VIDOSAT and VIDOSAT-BM algorithms for
improved performance. At each time instant ¢, we perform
multiple passes of denoising for each ), by iterating over
Steps (1) to (5) multiple times. In each pass, we denoise
the output from the previous iteration [7,27]. Given the noise
standard deviation oy = o of the initial input Yo — Y, in the
jth pass, the o; of the noise remaining in the array )} s re-
estimated as o; = /02 — (1/abm)||Yi—1 — Y||2 [43,44].
Here (1/abm)||)7~* —Y||? and o7 approximate the variances
of the noise removed and noise remaining, respecively, after
the 7 — 1 passes. The parameter ¢» = 0.6 is set empirically
(tuned over the training set) to best denoising performance.
Applying multiple-pass denoising does not increase the in-
herent latency m — 1 of the single-pass algorithm described
earlier.

The following details are specifically for VIDOSAT-BM.
First, instead of performing BM over the noisy input buffer
Vi, we pre-clean ); using the VIDOSAT mini-batch denoising
Algorithm Al, and then perform BM over the VIDOSAT
denoised output. Second, when denoised 3D patches are aggre-
gated to the output buffer, we assign them different weights,
which are proportional to the sparsity level of their optimal
sparse codes [45]. The weights are also accumulated and used
for the output normalization.

3) Hyperparameters: We work with fully overlapping
patches with spatial size n; = np = 8, and temporal
depth of m = 9 frames, which also corresponds to the
depth of the buffer ). It follows that for a video with
N7 x Ny frames, the buffer ) contains m /Ny N, pixels, and
P = (N1 —n1 + 1)(Ny — ng + 1) 3D patches. We set the
sparsity penalty weight parameter ag = 1.9, the transform

SMatlab implementations of VIDOSAT and VIDOSAT-BM are publicly
available at http://transformlearning.csl.illinois.edu.

6 Available at http://www.cs.tut.fi/~lasip/foi_wwwstorage/test_videos.zip

7 Available at http:/trace.eas.asu.edu/yuv/. Only videos with less than 1000
frames are selected for our image denoising experiments.

regularizer weight constant Ay = 1072, and the mini-batch
size M = 15 x mninsy. The transform W is initialized at the
beginning with the 3D DCT Wj,. For the other parameters,
we adopt the settings in prior works [2,7,27], such as the
forgetting factor p = 0.68,0.72,0.76,0.83,0.89, and the
number of passes L, = 1,2,3,3,4, for 0 = 5,10, 15,20 and
50, respectively. The values of p and L, both increase as the
noise level increases. The larger p helps prevent overfitting
to noise, and the larger number of passes improves denoising
performance at higher noise level. For VIDOSAT-BM, we set
the local search window size hy = hy = 21.

B. Video Denoising Results

1) Competing Methods: We compare the video denoising
results obtained using the proposed VIDOSAT and VIDOSAT-
BM algorithms to several well-known or recent alternatives,
including the frame-wise BM3D (fBM3D) [11] and DnCNN
(fDnCNN) [12] denoising methods, the image sequence de-
noising method using sparse KSVD (sKSVD) [5], the non-
local means method (RNLF) [18], the method based on
foreground and background separation (ReLD) [21], and the
popular VBM3D [15] and VBM4D methods [19]. We used
the publicly available implementations of these methods. For
fDnCNN, we used the trained models that have been released
by the authors [46] for ¢ = 10, 15, 20, and 50. Among
these competing methods, fBM3D and fDnCNN denoise each
frame independently by applying the popular BM3D and
DnCNN image denoising methods, respectively; sKSVD
exploits adaptive spatio-temporal sparsity but the dictionary
is not learned online; RNLF denoises videos by applying
non-local means filtering; ReLD separates the foreground and
background of video frames, and denoises them by sparse and
low-rank modeling, respectively; VBM3D and VBM4D are
popular and state-of-the-art video denoising methods exploit-
ing sparsity, block matching, and Wiener filtering. Moreover,
to better understand the advantages of the adaptive online high-
dimensional transform learning, we apply the proposed video
denoising framework, but fixing the sparsifying transform in
VIDOSAT to 3D DCT, which is referred as the 3D DCT
method in the results.

2) Denoising Results: We present video denoising results
using the proposed VIDOSAT and VIDOSAT-BM algorithms,
as well as using the other aforementioned competing methods.
To evaluate the performance of the various denoising schemes,
we measured the video (3D) peak signal-to-noise ratio (PSNR)
in decibels (dB), which is computed as the ratio of the peak
intensity value of the noiseless reference video to the root
mean square error between the reference and denoised videos.
We also report the PSNRs computed for individual 2D frames
(i.e., frame-wise PSNRs) of example videos, which are plotted
against the frame numbers.

Table III lists the video denoising PSNRs obtained by
the two proposed VIDOSAT methods as well as the eight
competing methods. For each method, we list APSNR, which
denotes the average PSNR loss (with its standard deviation
included in parentheses) relative to the proposed VIDOSAT-
BM. As the DnCNN model for ¢ = 5 is unavailable (shown
as N/A in Table III), the APSNR (and its standard deviation)
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(a) Noisy (¢) VBM3D (33.30 dB)
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Fig. 6.
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(e) VIDOSAT (35.84 dB)
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(a) The noisy version (o = 50) of (b) one frame of the Akiyo (288 x 352 x 300) video. We show the comparison of the denoising results (resp.

the magnitude of error in the denoised frame) using (¢) VBM3D (33.30 dB), (e) VIDOSAT (35.84 dB) and (g) VIDOSAT-BM (36.11 dB) (resp. (d), (f) and
(h)). The PSNR of the denoised frame is shown in the parentheses. The zoom-in region is highlighted using red box.

(c) VBM4D (33.04 dB)

40
- HZO
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(a) Noisy

(b) Original

Fig. 7.

(e) VIDOSAT (33.43 dB)
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(a) The noisy version (o = 20) of (b) one frame of the Salesman (288 x 352 x 50) video. We show the comparison of the denoising results (resp.

the magnitude of error in the denoised frame) using (¢) VBM4D (33.04 dB), (e) VIDOSAT (33.43 dB) and (g) VIDOSAT-BM (34.01 dB) (resp. (d), (f) and
(h)). The PSNR of the denoised frame is shown in the parentheses. The zoom-in regions are highlighted using red and green boxes.

using fDnCNN is computed excluding o = 5. It is clear
that the proposed VIDOSAT and VIDOSAT-BM methods both
generate better denoising results with higher average PSNR
values compared to the competing methods. The VIDOSAT-
BM denoising method provides average PSNR improvements
(averaged over all 34 testing videos from both datasets and all
noise levels) of 0.9 dB, 1.1 dB, 1.2 dB, 1.3 dB, 1.4 dB, 2.1
dB, 3.5 dB, and 3.9 dB over the VBM3D, VBM4D, sKSVD,
ReLD, RNLF, 3D DCT, fBM3D, and fDnCNN denoising
methods, respectively. Importantly, for each testing video and
noise level, VIDOSAT-BM was observed to consistently out-
perform all the competing methods. Among the two proposed
VIDOSAT algorithms, the average video denoising PSNR
achieved by VIDOSAT-BM is 0.3 dB higher than that using

the VIDOSAT method, owing to the effectiveness of block
matching for modeling dynamics and motion in videos. Fig. 10
plots the denoised PSNRs of videos Salesman and Bicycle for
various temporal depths m and ¢ = 20 using VIDOSAT-
BM. When using larger m, the VIDOSAT-BM algorithm
exploits video correlation with longer temporal range, while
BM becomes less accurate due to noise corruption. Thus, there
is an optimal m observed for each video and noise level.
We observed that the chosen m = 9 works well across our
experiments. Note that large m values also increase the latency
and computational cost of the algorithms.

Next, we illustrate some denoised results using VIDOSAT
and VIDOSAT-BM. To demonstrate the visual quality im-
provements achieved by the proposed methods, we also show
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(a) The noisy version (o = 20) of (b) one frame of the Bicycle (576 x 720 x 30) video. We show the comparison of the denoising results (resp.

the magnitude of error in the denoised frame) using (¢) VBM4D (34.00 dB), (e) VIDOSAT (32.07 dB) and (g) VIDOSAT-BM (35.33 dB) (resp. (d), (f) and
(h)). The PSNR of the denoised frame is shown in the parentheses. The zoom-in region is highlighted using red box.
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Fig. 9. Frame-by-frame PSNR (dB) for (a) Akiyo with o = 50, (b) Salesman with o = 20, and (c) Bicycle with o = 20, denoised by VBM3D, VBM4D,

and the proposed VIDOSAT and VIDOSAT-BM schemes, respectively.
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Fig. 10.  Plot of denoised video PSNRs by VIDOSAT-BM for several
temporal depths m for Salesman and Bicycle with o = 20.

the results obtained by VBM3D and VBM4D, which are the
best algorithms among the competing methods in Table III.

a) Fig. 6 shows one denoised frame of the video Akiyo
(o = 50), which involves static background and a relatively
small moving region. The magnitudes of the denoising errors
in Fig. 6 are clipped for viewing. The denoising results by
VIDOSAT and VIDOSAT-BM both demonstrate similar visual
quality improvements over the result by VBM3D. Fig. 9(a)
shows the frame-by-frame PSNRs of the denoised Akiyo,
in which VIDOSAT and VIDOSAT-BM provide comparable
denoising PSNRs, and both outperform the VBM3D and
VBM4D schemes consistently by a sizable margin.

b) Fig. 7 shows one denoised frame of the video Salesman
(o0 = 20) that involves occasional but fast movements (e.g.,
hand waving) in the foreground. The denoising result by VI-
DOSAT improves over the VBM4D result in general, but also
shows some artifacts in regions with strong motion. Instead,
the result by VIDOSAT-BM provides the best visual quality
in both the static and the moving parts. Fig. 9(b) shows the
frame-by-frame PSNRs of the denoised Salesman. VIDOSAT-
BM provides large improvements over the other methods
including VIDOSAT for most frames, and the PSNR is more
stable (smaller deviations) over frames. Fig. 11 shows example
atoms (i.e., rows) of the initial 3D DCT transform, and the
online learned transforms using VIDOSAT and VIDOSAT-
BM, at different times ¢. For the learned Wt’s using both
VIDOSAT and VIDOSAT-BM, their atoms are observed to
gradually evolve, in order to adapt to the dynamic video
content. The learned transform atoms using VIDOSAT in Fig.
11(a) demonstrate linear shifting structure along the patch
depth m, which is likely to compensate the video motion
(e.g., translation). On the other hand, since the 3D patches are
formed using block matching in VIDOSAT-BM, such structure
is not observed in Fig. 11(b) when Wt is learned using
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Fig. 11. Example atoms (i.e., 4 rows) of the initial 3D DCT (with depth

m = 9), and the online learned 3D sparsifying transform using (a) VIDOSAT,
and (b) VIDOSAT-BM, at times 10 to 40 (learned at same spatial location):
the atoms (i.e., rows) of the learned W are shown as m = 9 patches in each
column above. These 9 patches together form an 8 x 8 x 9 3D atom.

VIDOSAT-BM.

c) Fig. 8 shows one denoised frame of the video Bicycle
(o = 20), which contains a large area of complex movements
(e.g., rotations) throughout the video. In this case, the denoised
frame using VIDOSAT is worse than VBMA4D. However,
VIDOSAT-BM provides superior quality compared to all the
methods. This example demonstrates the effectiveness of joint
block matching and learning in the proposed VIDOSAT-BM
scheme, especially when processing highly dynamic videos.
Fig. 9(c) shows the frame-by-frame PSNRs of the denoised
Bicycle, in which VIDOSAT-BM significantly improves over
VIDOSAT, and also outperforms both VBM3D and VBM4D
for all frames.

VII. CONCLUSIONS

We presented a novel framework for online video denois-
ing based on efficient high-dimensional sparsifying transform
learning. The transforms are learned in an online manner from
appropriately constructed 3D (spatio-temporal) patches. These
patches are constructed either from corresponding 2D patches
of consecutive frames or using an online block matching
technique. The learned models effectively capture the dynamic
changes in videos. We demonstrated the promising perfor-
mance of the proposed video denoising schemes for several
standard datasets. Our methods outperformed all compared
methods, which included a version of the proposed video
denoising scheme in which the learning of the sparsifying
transform was eliminated and instead it was fixed to 3D DCT,
as well as denoising using learned synthesis dictionaries, deep
neural networks, the recent ReLD and RNLF, and the state-
of-the-art VBM3D and VBM4D methods. While this work
provides an initial study of the promise of the proposed
data-driven online video denoising methodologies, we leave
the study of the potential implementation and acceleration

of the proposed schemes for real-time video processing and
extensions to include richer overcomplete transforms [27, 36,
47] to future work.
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